398,704 research outputs found

    Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis

    Get PDF
    Abstract: This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine

    Accurate molecular imaging of small animals taking into account animal models, handling, anaesthesia, quality control and imaging system performance

    Get PDF
    Small-animal imaging has become an important technique for the development of new radiotracers, drugs and therapies. Many laboratories have now a combination of different small-animal imaging systems, which are being used by biologists, pharmacists, medical doctors and physicists. The aim of this paper is to give an overview of the important factors in the design of a small animal, nuclear medicine and imaging experiment. Different experts summarize one specific aspect important for a good design of a small-animal experiment

    Computers in Diagnostic Nuclear Medicine Imaging - A Review

    Get PDF
    Digital computers are becoming increasingly popular for a variety of purposes in nuclear medicine. They are particuiarly useful in the areas of nuclear imaging and gamma camera image processing,radionuclide inventory and patient record keeping. By far the most important use of the digital computer is in array processors which are commonly available with emission computed systems for fast reconstruction of images in transverse, coronal and sagittal views, particularly when the data to be handled is enormous and involves filtration and correction processes. The addition of array processors to computer systems has helped the clinicians in improving diagnostic nuclear medicine imaging capability. This paper reviews briefly therole of computers in the field of nuclear medicine imaging

    The use of radiolabeled nanoparticles for biomedical imaging

    Get PDF
    Introduction: In the last years, the practice of medicine is being changing with a special emphasis on the application of technological innovations where medical imaging modalities play an important role. Between several imaging modalities, Molecular Imaging (that is essentially based on Nuclear Medicine) is one of the most interesting solutions. On the other hand, assuming that nanoparticles are being studied as drug delivery systems, its application as vectors for radionuclide-based imaging is in a clear growing

    Best practice for the nuclear medicine technologist in CT-based attenuation correction and calcium score for nuclear cardiology

    Get PDF
    Abstract The use of hybrid systems is increasingly growing in Europe and this is progressively important for the final result of diagnostic tests. As an integral part of the hybrid imaging system, computed tomography (CT) plays a crucial role in myocardial perfusion imaging diagnostics. Throughout Europe, a variety of equipment is available and also different university curricula of the nuclear medicine technologist are observed. Hence, the Technologist Committee of the European Association of Nuclear Medicine proposes to identify, through a bibliographic review, the recommendations for best practice in computed tomography applied to attenuation correction and calcium score in myocardial perfusion imaging, which courses in the set of knowledge, skills, and competencies for nuclear medicine technologists. This document aims at providing recommendations for CT acquisition protocols and CT image optimization in nuclear cardiology

    Cerebral blood flow predicts differential neurotransmitter activity

    Get PDF
    Application of metabolic magnetic resonance imaging measures such as cerebral blood flow in translational medicine is limited by the unknown link of observed alterations to specific neurophysiological processes. In particular, the sensitivity of cerebral blood flow to activity changes in specific neurotransmitter systems remains unclear. We address this question by probing cerebral blood flow in healthy volunteers using seven established drugs with known dopaminergic, serotonergic, glutamatergic and GABAergic mechanisms of action. We use a novel framework aimed at disentangling the observed effects to contribution from underlying neurotransmitter systems. We find for all evaluated compounds a reliable spatial link of respective cerebral blood flow changes with underlying neurotransmitter receptor densities corresponding to their primary mechanisms of action. The strength of these associations with receptor density is mediated by respective drug affinities. These findings suggest that cerebral blood flow is a sensitive brain-wide in-vivo assay of metabolic demands across a variety of neurotransmitter systems in humans

    Systems Radiology and Personalized Medicine

    Get PDF
    Medicine has evolved into a high level of specialization using the very detailed imaging of organs. This has impressively solved a multitude of acute health-related problems linked to single-organ diseases. Many diseases and pathophysiological processes, however, involve more than one organ. An organ-based approach is challenging when considering disease prevention and caring for elderly patients, or those with systemic chronic diseases or multiple co-morbidities. In addition, medical imaging provides more than a pretty picture. Much of the data are now revealed by quantitating algorithms with or without artificial intelligence. This Special Issue on “Systems Radiology and Personalized Medicine” includes reviews and original studies that show the strengths and weaknesses of structural and functional whole-body imaging for personalized medicine

    Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine

    Get PDF
    Composite biomaterials based on nano hydroxyapatite (HAp) are the subject of numerous studies in reconstructive medicine. Multifunctional and nanoparticulate systems based on HAp and biodegradable polymers are successfully designed as systems for controlled and systemic drug delivery suitable for use in reconstructive medicine [1, 2]. Thanks to the stability and flexibility of the apatite structure, Ca ions can be replaced with various elements (Zn, Sr, Mg, Co, etc.) [3, 4]. Doping the apatite structure enables potential application of this material in preventive medicine, too. Multimodal imaging (MI) is a new and promising technique for improved diagnosis and it is patient-friendly because it saves time. MI has recently attracted much attention due to the advantageous combination of various imaging modalities, such as computer tomography, photoluminescence and magnetic resonance imaging.Poster presented at the Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018Abstract: [https://hdl.handle.net/21.15107/rcub_dais_3663

    New PET technologies:performance, image quality, and clinical implications

    Get PDF
    The most specific and sensitive imaging modality for visualizing and measuring human (patho)physiology in vivo is Positron Emission Tomography (PET). PET is a firmly established biomedical imaging modality with applications in routine clinical diagnostic imaging, but also in research, including clinical trials. Over the past years, PET technology development brought new innovative PET systems to the commercial market: silicon photomultiplier (SiPM)-based or ‘digital’ PET systems, and large axial field-of-view or ‘total body’ PET systems. This thesis describes the technical performance characteristics of these new PET technologies and, in addition, associated optimization of image quality and activity administration is reported. Furthermore, clinical implications and future perspectives regarding these innovations in the field of nuclear medicine and molecular imaging and other medical disciplines are discussed
    corecore